Microeconomics Pre-sessional September 2016

Sotiris Georganas
Economics Department
City University London

Organisation of the Microeconomics Pre-sessional

\square Introduction
\square Demand and Supply
\square Consumer Theory 11:25-13:00

Lunch Break
\square Problems - Refreshing by Doing
ㅁ Theory of the Firm 14:30-15:30 Break

- Problems - Refreshing by Doing 15:45-16:30

Demand and Supply

- The Market Demand Function
- The Market Supply Function
- Equilibrium
- Characterizing Demand and Supply
- Elasticity

Competitive Markets

N buyers
M sellers
M and N large enough that no agent can influence the market price

The Market Demand Function

The market demand function tells us how Q^{d} (the quantity of a good demanded by the sum of all consumers in the market) depends on various factors

$$
Q^{d=} Q\left(p, p_{0}, I, \ldots\right)
$$

The Demand Curve

The demand curve plots the aggregate quantity of a good that consumers are willing to buy at different prices, holding constant other demand drivers such as prices of other goods, consumer income, and quality

$$
Q^{d=} Q(p)
$$

Derived demand, Direct demand, Market demand curve

Reminder

When we graph demand (and supply) functions, we always graph P on vertical axis and Q on horizontal axis, but we write demand as Q as a function of P.

If P is written as function of Q, it is called the inverse demand.

Normal Form: $\mathrm{Q}^{\mathrm{d}}=100-2 \mathrm{P}$
Inverse form: $P=50-Q^{d} / 2$

The Law of Demand

The Law of Demand states that the quantity of a good demanded decreases when the price of this good rises

The demand curve shifts when factors other than own price change:

- If the change increases the willingness of consumers to acquire the good, the demand curve shifts right
- If the change decreases the willingness of consumers to acquire the good, the demand curve shifts left

Rule

A move along the demand curve for a good can only be triggered by a change in the price of that good.

Any change in another factor that affects the consumers' willingness to pay for the good results in a shift in the demand curve for the good.

The Market Supply Function

The market supply function tells us how the quantity of a good supplied by the sum of all producers in the market depends on various factors

$$
Q^{s}=Q\left(p, p_{0}, W, \ldots\right)
$$

The Market Supply Curve

The market supply curve plots the aggregate quantity of a good that will be offered for sale at different prices

$$
Q^{s=} Q(P)
$$

The Law of Supply

Definition: The Law of Supply states that the quantity of a good offered increases when the price of this good increases.

The supply curve shifts when factors other than own price change:

- If the change increases the willingness of producers to offer the good at the same price, the supply curve shifts right
- If the change decreases the willingness of producers to offer the good at the same price, the supply curve shifts left

Rule

A move along the supply curve for a good can only be triggered by a change in the price of that good.

Any change in another factor that affects the producers' willingness to offer for the good results in a shift in the supply curve for the good.

Linear demand and supply analysis

Linear demand and supply curves can be expressed as equations with an intercept and a slope:

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{I}+\mathrm{S} * \mathrm{P} \\
& \mathrm{Q}=\text { Quantity } \\
& \mathrm{I}=\text { Intercept } \\
& \mathrm{S}=\text { Slope }
\end{aligned}
$$

Linear demand and supply analysis Example: $\mathrm{Q}=220-4 * \mathrm{P}$

Linear demand curves

$Q_{D}=I_{D}+S_{D} * P$
Q_{D} is the amount of the good demanded at price P
I_{D} is the intercept for the demand curve - the amount that would be demanded if the price was zero
S_{D} is the slope of the demand curve - the change in the amount demanded when the price changes by one

Calculating values for a linear demand curve

Example: $\mathrm{Q}_{\mathrm{D}}=220-4 * \mathrm{P}$

$$
\begin{array}{ll}
\text { If } P=10 & Q_{D}=220-4 * 10=180 \\
\text { If } P=30 & Q_{D}=220-4 * 30=100 \\
\text { If } P=55 & Q_{D}=220-4 * 55=0 \\
& \text { (No demand if price }=55 \text {) } \\
\text { If } P=60 & Q_{D}=220-4 * 60=-20 \\
& \text { (Obviously impossible!) }
\end{array}
$$

Drawing a linear demand curve

Linear supply curves

$\mathrm{Q}_{\mathrm{S}}=\mathrm{I}_{\mathrm{S}}+\mathrm{S}_{\mathrm{S}} * \mathrm{P}$
Q_{S} is the amount of the good supplied at price P
I_{S} is the intercept for the supply curve - the amount that would be supplied if the price was zero
S_{S} is the slope of the supply curve - the change in the amount supplied when the price changes by one

Calculating values for a linear supply curve

Example: $\mathrm{Q}_{\mathrm{S}}=-20+2 * \mathrm{P}$
If $P=50$
$Q_{S}=-20+2 * 50=80$
If $P=20$
$\mathrm{Q}_{\mathrm{S}}=-20+2 * 20=20$
If $P=10$
$Q_{S}=-20+2 * 10=0$
(No supply if price $=10$)
If $P=1$
$\mathrm{Q}_{\mathrm{S}}=-20+2 * 1=-18$
(Obviously impossible!)

Drawing a linear supply curve Example: $\mathrm{Q}_{\mathrm{S}}=-20+2 * \mathrm{P}$

[^0]
Calculating the equilibrium point

$$
\begin{aligned}
& Q_{S}=-20+2 * P \\
& Q_{D}=220-4 * P
\end{aligned}
$$

In equilibrium, QS = QD, therefore

$$
\begin{aligned}
-20+2 * P & =220-4 * P \\
6 P & =240 \\
P^{*} & =40
\end{aligned}
$$

Calculating the equilibrium point

$$
\begin{aligned}
& Q_{S}=-20+2 * P \\
& Q_{D}=220-4 * P
\end{aligned}
$$

Substituting for P in the supply equation,
$Q_{S}=-20+2 * 40=60$
Substituting for P in the demand equation,

$$
Q_{D}=220-4 * 40=60 \quad P=40
$$

Giving the equilibrium position:
$P=40$ and $Q_{D}=Q_{S}=60$

Drawing a market equilibrium

Drawing a market equilibrium

September 16

Example The Market for Cranberries

$$
\begin{aligned}
& Q^{d}=500-4 p \\
& Q^{S}=-100+2 p
\end{aligned}
$$

$p=$ price of cranberries (dollars per barrel)
$\mathrm{Q}=$ demand or supply in millions of barrels per year

Example
 The Market for Cranberries

a. The equilibrium price of cranberries is calculated by equating demand to supply:

$$
\begin{aligned}
Q^{d} & =Q^{s} \ldots \text { or... } \\
500-4 p & =-100+2 p \ldots \text { solving }, \\
p^{*} & =\$ 100
\end{aligned}
$$

b. plug equilibrium price into either demand or supply to get equilibrium quantity:

$$
Q^{*}=\$ 100
$$

Example The Market for Cranberries

Example
 The Market for Cranberries

Example
 The Market for Cranberries

Example The Market for Cranberries

Definition: If sellers cannot sell as much as they would like at the current price, there is excess supply or surplus

Example The Market for Cranberries

[^1]
Example The Market for Cranberries

Excess Supply

-If there is no excess supply or excess demand, there is no pressure for prices to change and we are in equilibrium.
-When a change in an exogenous variable causes the demand curve or the supply curve to shift, the equilibrium shifts as well.

Shifts in Supply and Demand

Example: Coffee Beans, revisited

Price per pound

4. Price Elasticity of Demand

Elasticity of Demand: how sensitive is demand to changes in price

Price | The slope of the demand |
| :--- |
| One way to measure sens |

4. Price Elasticity of Demand

Elasticity of Demand: how sensitive is demand to changes in price

Price
... BUT, -5 what?
Measurement of the slope depends on units of measurement for P and Q

Market Demand: $\mathrm{Q}=\mathbf{5 0 - 5 P}$
Pincreases by $2 \rightarrow \mathbf{Q}$ falls by 10
Change in $Q /$ change in $P=-10 / 2=-5$

4. Price Elasticity of Demand

Price Elasticity of Demand is the percentage change in quantity demanded, brought about by a 1 percent change in price

$$
\begin{aligned}
& \varepsilon_{Q, P}=\frac{\% \text { change in quantity }}{\% \text { change in price }}=\frac{\frac{\Delta Q}{Q} * 100 \%}{\frac{\Delta P}{P} * 100 \%} \\
& \varepsilon_{Q, P}=\frac{\frac{\Delta Q}{\frac{Q}{P}}=\frac{\Delta Q}{\Delta P} \frac{P}{Q}}{}
\end{aligned}
$$

4. Price Elasticity of Demand

E.g. Market Demand: $Q=\mathbf{5 0} \mathbf{- 5 P}$

4. Price Elasticity of Demand

E.g. Market Demand: $Q=\mathbf{5 0} \mathbf{- 5 P}$

4. Price Elasticity of Demand

E.g. Market Demand: $Q=\mathbf{5 0} \mathbf{- 5 P}$

4. Price Elasticity of Demand

E.g. Market Demand: $Q=\mathbf{5 0} \mathbf{- 5 P}$

Example

Example

$$
\epsilon_{Q, p}=\frac{\Delta Q}{\Delta P} \frac{P}{Q}
$$

Comparing the price-elasticity of demand on different demand curves

Example

$$
\epsilon_{Q, p}=\frac{\Delta Q}{\Delta P} \frac{P}{Q}
$$

4. Price Elasticity of Demand

Value of $\epsilon_{Q, P}$	Classification	Meaning
	Perfectly inelastic demand	Quantity demanded is completely insensitive to price.
Inelastic demand	Quantity demanded is relatively insensitive to price.	
Unitary elastic demand	Percentage increase in quantity demanded is equal to percentage decrease in price.	
Elastic demand	Quantity demanded is relatively sensitive to price.	
Perfectly elastic demand	Any increase in price results in quantity demanded decreasing to zero, and any decrease in price results in quantity demanded increasing to infinity.	

4. Price Elasticity of Demand (intuition)

- When demand is elastic, increase in q offsets the fall in price, increasing revenue.
-When demand is inelastic, increase in p offsets the fall in q, increasing revenue.
- When demand is unit-elastic, revenue is maximum.

Note: Revenue $=$ Consumer Expenditure $=\mathrm{P}^{*} \mathrm{Q}$

4. Price Elasticity of

 Price Elasticity of Qeصीดeß el Products, Chicago, 1990s| Category | Estimated $\varepsilon_{\mathrm{Q}, \mathrm{P}}$ |
| :--- | :--- |
| Soft Drinks | -3.18 |
| Canned Seafood | -1.79 |
| Canned Soup | -1.62 |
| Cookies | -1.6 |
| Breakfast Cereal | -0.2 |
| Toilet Paper | -2.42 |
| | Laundry |
| Detergent | -1.58 |
| Toothpaste | -0.45 |
| Snack Crackers | -0.86 |
| Cigarretes | -0.10 |
| Paper Towels | -0.05 |
| Dish Detergent | -0.74 |
| | |

4. More Elasticities

* Income Elasticity of demand is the percentage change in quantity demanded, brought about by a 1 percent change in income

$$
\varepsilon_{Q, I}=\frac{\% \text { change in quantity }}{\% \text { change in income }}=\frac{\frac{\Delta Q}{Q} * 100 \%}{\frac{\Delta I}{I} * 100 \%}
$$

$$
\varepsilon_{Q, I}=\frac{\frac{\Delta Q}{Q}}{\frac{\Delta I}{I}}=\frac{\Delta Q}{\Delta I} \frac{I}{Q}
$$

4. More Elasticities

* Cross-Price Elasticity of demand is the percentage change in quantity of good i demanded, brought about by a 1 percent change of the price of good j.

$$
\varepsilon_{Q, I}=\frac{\frac{\Delta Q_{i}}{Q_{i}}}{\frac{\Delta P_{j}}{P_{j}}}=\frac{\Delta Q_{i}}{\Delta P_{j}} \frac{P_{j}}{Q_{i}} \quad>0 \text { then } \ldots
$$

[^0]: September 16

[^1]: September 16

